

The IoT Inc Business Meetup Silicon Valley

Opening remarks and guest presentation

Join us onsite or online on April 7 at 6PM PS

Predictive Analytics

and the Industrial Internet of Manufacturing Things

William Sobel System Insights

(lot)inc. Meetup

Bruce Sinclair (Organizer): bruce@iot-inc.com

C.M.

Target of Meetup

For business people selling products and services into IoT

but of course everyone else is welcome: techies, end-users, ...

Focus of presentations and discussions:

Type of Products

All incremental value in an IoT product comes from transforming its data into useful information

• Trinity of value: model, app and analytics

Analytics transforms data into value

Past

Present

Descriptive Diagnostic

Rules Engine RT Analysis

Future

Predictive Prescriptive

What happened? Why did it happen? What is happening?

What could happen? What should happen?

Next Meeting, Thursday, May 5, 2016 Mega Meetup2 will be in July

Presentation, recording of Meetup and announcements for today's meeting will be sent in one week to everyone who provided their email upon signup for this meeting or any other past Meetup

Send announcements to me: My email: bruce@iot-inc.com

Feel free to upload pictures and tweet with hashtag #iotbusiness

Reviews would be great!

We have Sponsors!

Sponsor spots still available!

Food & Drink is \$600 per meeting x 10 meetings a year = \$6,000

• Gold = \$2,000 and Bronze = \$500

Join us onsite or online on April 7 at 6PM PS1 Predictive Analytics and the Industrial Internet of Manufacturing Things

William Sobel

System Insights

VIMANA by System Insights

Berkeley, CA | Chennai, India

Predictive Analyics Industrial Internet of Things for discreet manufacturing

IOT for Business April 7, 2016

0 8

William Sobel Chief Strategy Officer System Insights

MTConnect Chief Architect

About Myself...

- Chief Strategy Officer System Insights
- Chief Architect of the MTConnect Standard for the last 9 years
- Chair of the MTConnect Technical Steering Committee
 - Original Author of the Standard
- Co-Chair IIC Industrial Analytics Task Group
- My Background
 - Financial Systems Architecture
 - Real-Time Analytics
 - Distributed Architecture & Fault Tolerance

System Insights

The predictive analytics platform for manufacturing intelligence

Berkeley, CA

IIOT for Manufacturing Industrial Internet of Things

Internet of Things

- Industrial vs. Everything Else - Highest potential Impact - \$1.2 - 3.7T
- Areas
 - Operations Optimization
 - Predictive Maintenance
 - Inventory Optimization - Health and Safety

McKinsey Global Institute THE INTERNET OF THINGS: MAPPING THE VALUE BEYOND THE HYPE JUNE 2015

New Economies

World Economic Forum: Industrial Internet of Things: Unleashing the Potential of Connected Products and Services, Jan 2011

Autonomous On-Demand & Distributed

Outcome Based Economy

Manufacturing Services & Data Monetization

Copyright © 2015 System Insights, All Rights Reserved

Intelligence Hierarchy

Monitored - Data collection and backward looking reports

Primitive - No software or control software only \leftarrow 95% of shops

Self Optimizing - Learning models optimize processes

Predictive - Problems are solved before they impact process

Proactive - Detect problems before they happen using CEP and learning

Real-Time Analytic - Determines why a process failed or productivity was lost

Copyright © 2016 System Insights, All Rights Reserved

Steel Production

VIMANA by System Insights

Metal Cutting

Traditional Milling

Laser

Water Jet

VIMANA by System Insights

Non Traditional

Wire EDM

Additive

Hybrid Additive

Digital Thread

VIMANA by System Insights

Products

11

Case Study: Predictive Analytics for Process Manufacturing Karthik Ranganathan

Predictive Quality and Yield

- Complex multi-stage high-speed manufacturing process
- Process is manually configured and adjusted
- Utilize legacy data collection of low-level sensor data
- Data Cleansing and Semantic Transformation Multidimensional Data Modeling
- Contextualize Data with Device, Part and Process

Multi-dimensional data

- 1. Store Everything Can't create data
- parts Find patterns and correlations
- 3. Everything must have context

Data Set

Source

- 33 Tables and 800+ variables/columns - Size: 250+ GB
- Challenges

 - Data was organized per-operation, not across all operations Varied parameters across operations and type of equipment Potential missing data and data entry errors
- The data had to be prepped for analysis, including Cleanup and Contextualization

Data Cleansing

- Outliers
 - Observations which deviate significantly from the ____ norm, with suspect veracity
 - Can remove to prevent model corruption —
- **Probable Causes**
 - Data Entry Errors ____
 - Missing Data ____
 - **Differing Units**
 - Measurement flaws
- Examples
 - UTS/LYS values > 1000 MPa, < 10 MPa
 - Output slab weight > Input slab weight (~1.85%)

Process-based Quality Prediction

Build process-based model to predict final quality

VIMANA by System Insights

Quality Prediction

- Expected quality parameters provided by customer
- However, it was seen that these bounds are not strictly followed while attributing grade
- We detected the true quality limits automatically from the data
- Reduction of lower boundary by 10 ~ 20 MPa for both LYS and UTS

18

Predicting Grade

- Predict grade based on the input parameters
- Analysis:
 - 5 Grades Analyzed
 - Total Observations 5008
 - Training Data 80%

92 +/- 1% **Production of Coils that match Expected Grade** Matched Plant Predictions 99 +/- 0.5% Improvement on Missed Predictions 45 +/- 10% 95 +/- 1% **New Prediction Methodology**

Copyright © 2016 System Insights, All Rights Reserved

Predictive Services

- Using the models, we can predict the UTS with to 95% Accuracy based on chemistry
- Derived from empirical analysis of manufacturing process and data analytics

Prediction of Ultimate Tensile Strength for Micro-Alloy Grades

howing 1 to 10 of 10 entries

0.150

0.025

0.150

0.030

Value

- Reduce cost of quality
 - Control quality with critical parameters

 - Set parameter limits higher granularity and control over process

- Capture Tribal Knowledge
 - Capture and quantify know-how of the "humans in the loop"
 - Improve knowledge transfer and management oversight

Target areas for process improvement

Understand process parameters to control to have biggest impact on part quality

Market

- Global Steel Industry
 - Production (2015) 1690 million tonnes
 - Market \$1.3 Trillion
- One Company in Study
 - Market: \$3 billion
 - Operational profit: \$700 million
- Estimated Savings:
 - Based on a 3-5% reduction in operational costs
 - \$150 million in potential profit
 - \$250 billion in potential profit for entire market

Copyright © 2016 System Insights, All Rights Reserved

Big Data Services

Copyright © 2015 System Insights, All Rights Reserved

Present: Feed - Forward Processes

VIMANA by System Insights

Current Feedback

Digital Manufacturing Feedback

Crowd Sourcing for Manufacturing

Tool and Process Analytics

Analyze process parameters and tooling usage to reduce tool costs and improve tool life

Detailed understanding of cycle time and process parameters

Program	Process	rocess Device		Version	Count	Cycle Time Actual (s)		Cycle Time Planned (s)					
240207D7	845_067_187OPE High Speed		High Speed S	5-Axis Mill 02	0	145	1349			1350	1		
614910D5	447_669_180027 High Speed 5-Axis Mill 02			5-Axis Mill 02	0	137	1886	1886		1768			
210920D7	56R_78J_17802	56R_78J_178027 High Speed 5-Axis Mill 02			0	125	1121			1350			I 1
230111D4	40R_62J_180005 High Speed 5		5-Axis Mill 02	0	120	756.4		1350					
210902D7	40R_62J_188030		High Speed 5-Axis Mill 02		0	122	1582		1768				
614910D7	D7 40R_62J_180004		High Speed 5-Axis Mill 01		0	147	1159		1101				
614921D5	447_669_188OPE		High Speed 5-Axis Mill 01		0	254	1388		1101				
240203D7	56R_78J_178030		High Speed 5-Axis Mill 02		0	75	1091		1768			I	
210903D4	28G_40Y_164OPE High Speed 5-A		5-Axis Mill 01	0	160	784.9		1101					
				Path Ecodrate		Spindle Sp	and		Metric				
	0	_	1	Fattreeulate	-	Spinale Sp	ceu		Metho		-	44.04	
NH-D2	0		I					56.54			50.8	41.91	4400
NH-D1	0	- 1							23.17		304.8	60.96	5788
NH-EA	0							1/6.1		2337	508	9168	
NH-D1							91.55		1626	-	16000		
NH-D0							148		101.6	81.28	4500		
NH-E2	0							24.85		508	129.5	240	
NH-E2	0								116.4		2337	-	8730
60-E2	0							172.9		2337	266.7	7640	
60-E2	0							160.7		2337	711.2	7640	
NH-E2	0							61.74		2337	406.4	7640	
NH-D1	0							40.13			76.2	60.96	1480
10100											010.1	1030	0.00

Automatically identify best practices for process planning

Droorom	Tool Sequence	Version		Pat	th Feedrate (mm	/min)		Spindle Speed (rpm)			
Program			Actual				Actual				
230111D4	16	0	342.9		•	Ι	4814	•			
210920D7	18	0	266.7		•	Ι	3742	•			
210902D7	8	0	213.4		•	Ι	3208	•			
240203D7	8	0	711.2		•	Ι	3742	•			
230111D4	19	0	304.8		•	Ι	4278	•			
614910D5	8	0	266.7		•	Ι	5273	•			
240207D7	1	0	228.6		•	Ι	5614	•			
614910D5	9	0	711.2		•	Ι	4814	•			
210902D7	5	0	533.4		•	Ι	2751	•			
210920D7	1	0	228.6		•	Ι	3208	•			
240207D7	2	0	266.7		•	Ι	6149	•			
240203D7	13	0	266.7		•	I	4278	•			

Increases in Efficiency

Conservative Estimates:

10% Increase in Production Efficiency + 10% Reduction of Cycle Time

Baseline

Total Time: 100%							
Producing: 40%			2000 Hours				
ICT: 60% of Prod.	1200 Hou	rs					
Total Time: 100%							
Producing: 50%		2500 Hours					
ICT: 70% of Producing		1750) Hours				
Total Time: 100%				7			
Producing: 50%				2500 Hours			
ICT: 70% of Producing		1750) Hours				
CT Reduction: 10%			1950 Hours	•			

VIMANA by System Insights

These improvements are what was referenced in the report – remember?

1.2 - 3.7 Trillion

Effectively: 62% higher production

Predictive Analytics

Why would we do anything else?

Copyright © 2015 System Insights, All Rights Reserved

Semantic Transformation

Continuous Improvement

Production

Implement

Execution optimization Process Improvement Workforce Training

Tooling Optimization Predictive Quality Manufacturing Strategy Design for Manufacturing

Questions?

